
(LECTURE 5)

Patterns, Regular Expressions 
and Finite Automata



Patterns and their defined languages

 S: a finite alphabet
 A pattern is a string of symbols representing a set of strings 

in S*.
 The set of all patterns is defined inductively as follows:

1. atomic patterns:
a  S, e, , #, @.

2. compound patterns:   if a and b are patterns, then so are: a + b, a  b , a*, a+, ~ 
a and ab .

 For each pattern a, L(a) is the language represented by a and 
is defined inductively as follows:
1. L(a) = {a}, L(e) = {e}, L()= {}, L(#) = S, L(@) = S *.
2. If L(a) and L(b) have been defined, then

L(a + b ) = L(a ) U L(b ),     L(a  b ) = L(a )  L(b ).
L(a+) = L(a )+, L(a*) = L(a)*,
L(~ a ) = S* - L(a ), L(a  b) = L(a )  L(b ).



More on patterns

 We say that a string x matches a pattern a iff x  L(a).

 Some examples:
1. S* = L(@) = L(#*)

2. L(x) = {x} for any x  S*

3. for any x1,…,xn in S*, L(x1+x2+…+xn) = {x1,x2,…,xn}.

4. {x | x contains at least 3 a’s} = L(@a@a@a@}

5. S- {a} = #  ~a

6. {x | x does not contain a} = (#  ~a)*

7. {x | every ‘a’ in x is followed sometime later by a ‘b’ } =

= {x | either no ‘a’ in x or $ ‘b’ in x followed no ‘a’ }

= (#  ~a)* + @b(#  ~a)*    



More on pattern matching

 Some interesting and important questions:
1. How hard is it to determine if a given input string x matches a given 

pattern a ?
==> efficient algorithm exists

2. Can every set be represented by a pattern ?
==> no! the set {anbn | n > 0 } cannot be represented by any pattern.

3. How to determine if two given patterns a and b are equivalent ? 
(I.e., L(a) = L(b)) --- an exercise !

4. Which operations are redundant ?
 e= ~(#+ @) =  *  ;    a+ = a  a*    
 # = a1 + a2 +…+ an if S = {a1,.., an}
 a + b= ~(~a  ~b)  ; a  b = ~ (~a + ~b )
 It can be shown that ~ is redundant.



Equivalence of patterns, regular expr. & FAs

 Recall that regular expressions are those patterns that can be built 
from: a S, e, , +,  and *.

 Notational conventions:
 a + brmeans a + (br)
 a + b* means  a + (b*)
 a b* means  a (b*)

Theorem 8: Let A  S*. Then the followings are equivalent:
1. A is regular (I.e., A = L(M) for some FA M ),
2. A = L(a) for some pattern a,
3. A = L(b) for some regular expression b.

pf: Trivial part: (3) => (2).
(2) => (1)  to be proved now!
(1)=> (3) later.



(2) => (1) : Every set represented by a 
pattern is regular 

Pf: By induction on the structure of pattern a.
Basis: a is atomic: (by construction!)

1. a = a : 

2. a = e:

3. a =  :

4.  a =  #:

5.  a= @ = #* :

a

e

e
a,b,c,…

a,b,c,…



Inductive cases: Let M1 and M2 be any FAs accepting L(b) 
and L(g), respectively.

6. a= b g: =>  L(a) = L(M1  M2)

7. a= b * : =>  L(a) = L(M1*)

8. a= b + g, a= ~b or a = b g: By ind. hyp. b and gare regular. 
Hence by closure properties of regular languages, a is regular, too.

9. a= b+ = b b* : Similar to case 8.



Some examples patterns & their equivalent FAs

1. (aaa)* + (aaaaa)*



(1)=>(3): Regular languages can be represented by reg. expr.

M = (Q, S, d, S, F) : a NFA; X Q: a set of states;  m,nQ : two states

 pX(m,n) =def {y  S* | $ a path from m to n labeled y and all 
intermediate states  X }.       
 Note: L(M) = ? 

 pX(m,n) can be shown to be representable by a regular expr, by 
induction as follows: 

Let D(m,n) = { a | (m –an) d } = {a1,…,ak} ( k 0) 

= the set of symbols by which we can reach from m to n, then

Basic case: X =  :

1.1 if m  n: p(m,n) = {a1, a2,…,ak } = L(a1 + a2+…+ ak) if k > 0,

= {}                   = L()                     if k = 0.

1.2 if m =n: p(m,n) = {a1, a2,… ak, e}=L(a1 + a2+…+ ak +e) if k > 0,

= {e}                    = L(e)                          if k = 0. 



3. For nonempty X, let q be any state in X, then :
pX(m,n)  =  pX-{q} (m,n)  U pX-{q}(m,q)  (pX-{q}(q,q))* pX-{q}(q,n).

By Ind.hyp.(why?), there are regular expressions a, b, g, r  with
L( [a, b, g, r]) = [pX-{q} (m,n), pX-{q}(m,q), (pX-{q}(q,q)), pX-{q}(q,n) ]  

Hence pX(m,n) =     L( a )      U L(b)           L(g)            * L(r ), 
= L(a + bg*r )

and can be represented as a reg. expr.  

 Finally, L(M) = {x | s --x--> f, s  S, f  F }
= SsS, fF pQ(s,f),  is representable by a regular expression.  



Some examples
Example (9.3): M : 

 L(M) = p{p,q,r}(p,p)  =  p{p,r}(p,p) +  p{p,r}(p,q) (p{p,r}(q,q))* p{p,r}(q,p)
 p{p,r}(p,p)  = ?
 p{p,r}(p,q)  = ?
 p{p,r}(q,q)  = ?
 p{p,r}(q,p)  = ? 

 0 1
>pF {p} {q}
 q {r} {}
 r {p} {q}

Hence L(M) = ?



Another approach

 The previous method 
 easy to prove,

 easy for computer implementation, but

 hard for human computation.

 The strategy of the new method:
 reduce the number of states in the target FA and 

 encodes path information by regular expressions on the edges.

 until there is one or two states : one is the start state and one is the 
final state.



Steps

0. Assume the machine M has only one start state and one final state. 
Both may probably be identical.

1. While the exists a third state p that is neither start nor final:
1.1 (Merge edges) For each pair of states (q,r) that has more than 1 edges with 

labels t1,t2,…tn, respectively, than merge these edges by a new one with 
regular expression t = t1 + t2 … + tn.

1.2 (Replace state p by edges; remove state)
Let (p1, a1, p),… (pn, an, p) where pj != p be the collection of all edges in M with 

p as the destination state, and
(p,b1, q1),…,(p, bm, qm) where qj != p be the collection of all edges with p as 
the start state. Now the sate p together with all its connecting edges can be 
removed and replaced by a set of m x n  new edges :

{ (pi, ai t* bj, qj) | i in [1,n] and j in [1,m] }.
The new machine is equivalent to the old one.



 Merge Edges :
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a3g*b1

a2 g*b1

a1 g*b1

a1 g*b2a2 g*b2

a3 g*b2

•Replace state by Edges

Note: {p1,p2,p3} may intersect with {q1,q2}.



2.  perform 1.1 once again (merge edges)
// There are one or two states now
3  Two cases to consider:

3.1 The final machine has only one state, that is both start
and final.  Then if  there is an edge labeled t on the 

sate,
then t* is the result, other the result is e. 

3.2 The machine has one start state s and one final state f. 
Let (s, ss, s), (f, ff, f), (s,sf, f) and (f, ff, f) be the 

collection  of   all edges in the machine, where (sf)
means the regular expression or label on the edge from s 
to f.
The result then is



Example

p q r

p 0 1 0,1

q 1 1 0,1

r 0 0,1 1

  0 1 
>p {p,r} {q,r} 
 q {r} {p,q,r} 
 rF {p,q} {q,r} 

 

 

1. another representation



p q r

p 0 1 0,1

q 1 1 0,1

r 0 0,1 1

p q r

p 0 1 0+1

q 1 1 0+1

r 0 0+1 1

Merge edges



p q r
p 0 1 0+1
q 1 1 0+1
r 0 0+1 1

remove q

p q r
p 0,

11*1
1 0+1,

11* (0+1)

q 1 1, 0+1

r 0,
(0+1) 1*1

0+1 1, 
(0+1)1*(0+1)

q
p p

r

1

r 0+1

1

0+1

1



p r
>p 0+11*1 0+1+11* (0+1)

rF 0+ (0+1) 1*1 1+ (0+1)1*(0+1)

Final result : = [ pp + (pr) (rr)* (rp) ]*   (pr) (rr) *

[ (0+11*1) +(0+1+11*(0+1)) (1+(0+1)1*(0+1))* (0+(0+1)1*1) ]*
(0+1+11*(0+1)) (1+(0+1)1*(0+1))*

Form the final result


